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ABSTRACT

Antidepressant research seems under risk of bias and poor reproducibility. Recent debates brought the use of the p
values in hypothesis testing to the center of a reproducibility crisis. In basic biomedicine, the use of p values has been
justified by tradition instead of reasoning. Here, a biomedical researcher commented concerns with the traditional use
of the p values in basic antidepressant research and discussed the missing pieces limiting the plausible justifications
to their use in the field.
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INTRODUCTION

Basic research employs an experimental model that might be useful to discover new compounds with therapeutic
value. In antidepressant research, experimental models are challenging and imperfect due to the complexity of

mechanisms underlying the subjective symptoms of Major Depression or other affective disorders 1. Ideally, a model
for antidepressant research should recreate in laboratory symptoms and the neurobiological disturbances similar to

those found in patients 2. Additionally, the modeled symptoms and disturbances should be reversible by treatments
effective in therapeutics. In other words, experimental models may be used to gain information on the potential
utility of an unknown intervention in the treatment of diseases. Despite imperfections and partial validity, in vivo

models are currently more representative than in silico or in vitro approaches in biological psychiatry 3.

The unstable nature of the biological outcomes difficult the standardization and reproducibility of in vivo models in
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the laboratory. For example, natural or pathological features of an organism are species-age-sex-and so non-specific

and, furthermore, interact with the environment where animals or humans are living. 4,5,6. Therefore, in vivo settings
require systematic approaches to prepare laboratory and experimental conditions to achieve consistency and internal

validity 7,8. Despite the efforts of the scientific community to increase the validity of in vivo studies 9,10, biological

psychiatry still seems susceptible to reproducibility problems 11.

Some researchers claim that reproducibility crisis in biomedicine may be more related to statistical misuse and poor

analytical decisions than to other technical aspects of the biomedicine 12. Recent debates brought the use of the p

values in hypothesis testing to the epicenter of a reproducibility crisis in sciences 13,14. Biomedical studies are
especially under scrutiny because the uses and misuses of p-values seem endemic in basic, preclinical or clinical

levels 15,16. Although no consensus has been met, many researchers advocate for the banning of the traditional use of

p values from biomedicine 15,16,17,18,19. I share with others the view that before abrupt decisions, scientists should

consider the pros and cons and justify their choices 14.

In the field of basic antidepressant research, the uses of p values for hypothesis testing are on the grounds of routine

and tradition instead of elaborated reasoning 20. In this text, the emphasis is on how a biomedical researcher could

interpret properly and justify the use of p values for hypothesis testing in a scientific project 21,22,23,24. Because the

range of research questions in biomedicine is vast, justifications on analytical choices may be also vast 25. Hence, the
examples to make the misconceptions and concepts clearer were taken from basic biomedical studies on the author’s
discretion focusing on animal models for antidepressant research. To understand the uses of p values in hypothesis

testing it seems advisable to examine their definitions, history, and examples (further readings 20,26,27,28,29.
Hereafter, in the following text, I attempted to summarize general information on p values before discussing their
specific applications in the field of antidepressant research.

An official definition by ASA describes p values as “the probability under a specified statistical model that a
statistical summary of data (for example, the sample means the difference between two compared groups) would be

equal to or more extreme than its observed value” 20. The previous sentence could also be read as “the probability
(p) of the observed data with certain features, or more extreme than the observed ones occurred given they were
drawn from a hypothetical population with the certain features”. The features of the hypothetical population are
called parameters (mean, standard deviation[1] , etc.), while the features of the sample are called statistics (means,
standard error, etc).  P values are the probabilities associated with statistics and the higher a p-value, the higher a
probability that the sample was a part taken from the hypothetical population.

In traditional hypothesis testing, the null hypothesis or H0, i.e., a population with mean equals zero and variance
equals one, is the “hypothetical population with the certain features”. Thus, the higher a p-value, the higher a
probability that the sample was a part taken from the null hypothesis. In contrast, the lower a p-value, the lower a
probability that the sample was a part taken from the null hypothesis. P-values as fiducial inference against a null
hypothesis were created by Fisher and was remodeled by the frequentist views of Neyman and Pearson at the

beginning of the twentieth century when the first controversy on the matter also appeared 26. Although classical and
frequentist interpretations of p values differ, both schools agree on their value as an approach to hypothesis testing
2628. Over time, different research fields accepted p values for hypothesis testing with more or fewer deliberations
15,18,30,31,32. Every project or research question will have a particular null hypothesis allowing particular conclusions
depending on the probability of the sample be drawn from the null population.

In the context of basic biomedical research, the null hypotheses often may be declared as the absence of an effect or a
null effect. Consider, for example, an idealized experiment for evaluation of a putative new antidepressant (drug A).
In this experimental setting, biological outcomes (behavior, blood pressure, glycemia, etc) will be registered in
subjects (animals, cells, tissues, etc) randomly assigned to different groups (e.g. control group treated with water, or
experimental group treated with drug A). The values of the biological measures or outcomes or dependent variables
of each group will be summarized into statistics according to their nature (e.g. paired or independent, quantitative or
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qualitative, normal or non-normal, etc.). The statistical summaries (means, variances, etc.) of the outcome data allow 
comparison between the groups using statistical approaches. In the present example, two-sample Student’s T-test 
might be a suitable approach once a pair of independent groups will be compared (see Box 1 for further information). 
In the Student’s T-test, the null hypothesis may be stated as the null difference between the two means. Thus, the 
higher the p-value associated with the calculation of the t value, the higher the probability of the null difference. 
Conversely, the lower the p-value associated with the calculation of the t value, the lower a probability of the null 
difference. Conclusions of the theoretical study described above may then vary from “drug A has an effect” to “drug 
A has non-effect”[2]  depending on the p-value associated with the statistical test.

Box 1: In unpaired Student’s   T-test, a value of t is calculated using data from each group (control and 
  experimental) and degrees of freedom are calculated using the sample sizes of   each group. The calculated values 
of t and the degrees of freedom are then   used to find a corresponding value of alpha   in a t-table. The t-table is 
arranged in the following way: 1- each column   contains the t values associated to a specific alpha across a series of

In basic antidepressant research, the use of p values associated with statistical tests to claim “statistical significance”
of scientific data seems very common. Terms such as “very significant” or “significant” or “non-significant” are
traditionally used in basic biomedicine according to p values. Although the classification of scientific results
according to their significance or importance is beneficial to the appraisal of scientific evidence, p values seem

inappropriate for it 18.  The “significant”-related terms may reflect, at best, researchers’ degree of confidence on the
null hypothesis based on the data, without any connotation of biological value or confidence on the alternative

hypothesis  19,20. In other words, low values of p are evidence against null, not in favor of a specific alternative

hypothesis, as commonly stated 19,20,21. American Statisticians Association recently published a collection of papers

advising scientists to move beyond p values when doing appraisals of their data 33. So, why bother to calculate p
values for hypothesis testing? Because p values may help to assess the rate of errors in hypothesis testing or assist

decisions on acceptable levels of errors in experiment 22, for example.

In a frequentist view, the low values of p associated with a statistical test denote low probabilities of the Type I error
22,24,28. In hypothesis testing, the Type I error means the probability, named alpha, of “rejecting the H0 when it is
true” (i.e., a false positive result) and Type II error represents the probability, named beta, of “non-rejecting H0 when
it is false” (i.e., a false negative result). In this context, alpha would represent the upper limit of the Type 1  error or

false positive results tolerated in the experimental situation in the long run 22,24. For example, the traditional values
of alpha such as 0.05 or 0.01 indicate a rate of a Type I error or a false positive result occurring at every 20 or 100

replications of the experiment, respectively, everything else being equal 22,24.  Then, alpha is a theoretical, arbitrary,
“special” p-value that should be set during experimental design, i.e., before the collection of data, to control the rate

of Type I error in an experimental setting or research field 22,23,24. Depending on the research field, missing a real
effect every 20 or 100 replications worth the risk while in other fields, the price to pay for this mistake may be too
high, demanding the lowering of the acceptable value of alpha.

Benjamin et al. (2017) 13 proposed that sciences should adopt a default value of alpha equals 0.005, instead of 0.05,
in hypothesis testing to reduce the rate of Type I error improving reproducibility. Then, when a p-value associated
with a statistical test is lower than a low alpha, it indicates minimal rates of errors in the experimental setting? The
answer is: no, not automatically, because setting the alpha value may help to control the rate of Type I error in the
experimental setting without affecting the rate of Type II error. Moreover, the probability of Type I error is balanced
by the probability of Type II error then by lowering the alpha, other things being equal, beta will increase. High rates
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of Type II error may also bring inconsistent results over time contributing to reproducibility problems. Therefore, the
focus on monitoring of alpha, without the appraisal of other features such as experimental design and statistical

power (power= 1- beta), will do little for scientific reproducibility 14. It is up to researchers in a research field to
decide how tolerable the amounts of Type I and II errors are in an experimental research plan.

Beyond the focus on alpha values, some authors have discussed the suitable conditions to keep low the rate of errors

in experimental settings 22,23,24. Benning (2018) 23 provided putative justifications to analytic choices by examining
experimental scenarios originated from different levels of theoretical backgrounds (exploratory or confirmatory

studies) or availability of samples (abundant or scarce resources). Lakens (2018) 24 discussed an approach to

reducing alpha, controlling beta, as a function of the sample size. Mudge et al. (2012) 22 performed an extensive
study on the consequences of variations of alpha values on the amount and the balance of Type I and Type II errors
in experimental settings. In this last reference, authors suggested an approach to classify results as significant in
studies with low power and low sample size, which are typical in basic biomedical research (see Box 2 for further
information).

Box   2 (Adapted from Mudge et al. 2012 22: Combined   probabilities of Type I and Type II error may be more

CONCLUSION

What would then be a suitable justification for alpha levels in basic antidepressant research? I do not see a definitive
answer for this last question because many pieces of information required to the analytical justifications are still
missing: 01- What is the minimal effect size of interest in the field; 02- What is the suitable statistical power
necessary to estimate the minimal effect size of interest in the field?; 03- What are the acceptable rates of errors Type
I and II in the field?  In the specific case of in vivo models, there is yet an extra unknown: 04- what is the ethical cost
associated to the different Types of errors? Some efforts are in progress to address issues related to questions 01 and

02 34, 35 while the aspects related to questions 03 and 04 still requires more attention and discussion in the research
field.
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