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Introduction
Human Erythropoietin (hEPO) is the main hormone in-

volved in the differentiation, proliferation and maintaining 
of physiologic levels of erythroid stem cells1, it was also the 
first hematopoietic growth factor known2. The hEPO is an acid 
glycoprotein, produced by the liver during the fetal stage and 
mostly the kidney in adult, it is mainly secreted as a response 
of acute anemia (Figure 1). It’s regulation depends on blood 
oxygen levels and its expression is controlled by the hypoxia 
inducible factor HIF13.

The hEPO is a 165 amino acids glycoprotein and an es-
timated molecular weight of 30,4 kDa. It has two internal di-
sulfide bonds between the cysteines 7-161 and 29-33, which 
are essential for maintaining the biological activity4, 5. The gly-
cosylations are 40% of the protein molecular weight and they 
are located in three potential N-linked glycosylation sites on 
Asn24, Asn38 and Asn83, plus a potential O-glycosylation site 
on Ser1266–9.

These glycosylations plays an important role for hEPO 
in vivo activity and it has been described that the most active 
fraction is the one with tetra-antennary tetra-sialylated ter-
minations10, 11. The glycosylations reduces rhEPO glomerular 
filtration rate thanks to the increase in molecular weight and 
they also reduces its hepatic clearance because of the sialic 

acid terminations which protects it from galactose and man-
nose receptors in the liver7, 12, 13.

The deficiency of hEPO in the organism causes severe 
anemia. This condition is observed in patients with chronic 
kidney failure associated primarily to trauma, transplants and 
diabetes14. Deficiency of hEPO is also associated to the effects 
of cancer chemotherapies, zidovudine treatments in patients 
with HIV and ribavirin treatment in patients with Hepatitis C. 
The administration of the recombinant hormone is essential to 
solve or minimize the effects of the anemia on this diseases15, 

16, as it shows the Figure 1.

Recombinant hEPO production
Almost all recombinants human Erythropoietin (rhEPO) 

used today as a biopharmaceutical are produced in geneti-
cally modified CHO cells. This cell line comes from the ovary 
of Chinese hamster and is widely used for the expression of 
recombinant proteins with therapeutic purposes. The current 
production of rhEPO and its variants, for both clinical and re-
search purposes, is mainly done in mammalian cell lines due 
to the structural complexity of rhEPO and the importance of 
posttranslational modifications on its activity5, 7. Some groups 
have produced rhEPO in bacteria like Escherichia coli and Baci-
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llus brevis, but it lacks in vivo activity due to the absence of gly-
cosylations17, 18. Since yeast or filamentous fungi are commonly 
used for the production of complex proteins, they could be a 
solution for rhEPO, however they generate a different pattern 
of glycosylation which affects glycosylation sensitive proteins 
like rhEPO19, 20. That is why enterprises like GlycoFi Inc, a Merck 
& Co. subsidiary, have emerged. They produce biopharmaceu-
ticals in yeast strains that are engineered to perform specific 
human glycosylation. For example, they have produced sialyla-
ted rhEPO in “humanized” Pichia pastoris and showed that it 

was functional with a pharmacokinetics and a pharmacodyna-
mics similar to the rhEPO produced in CHO cells21, 22, despite 
having mostly bi-antennary glycosylations23.

Nowadays, all products of rhEPO commercialized in USA 
or Europe are produced in CHO cell line24. Although, some 
groups have tried different cell lines, such as rhEPO produced 
in myeloma, kidney of baby hamster, kidney of human embryo 
and human retina derived cells25. These cell lines generate di-
fferent patterns of glycosylation, but CHO and BHK cells were 
found to sialylate rhEPO more effectively26. It is known that 

Figure 1. Function of hEPO and importance of rhEPO. Under normal conditions the kidney secretes hEPO in response to ane-
mia. This causes a stimulation of differentiation and proliferation of erythroid stem cells in bone marrow, thus correcting the 
anemia. When the kidney is damaged it is needed an external supply of the recombinant hormone to prevent chronic anemia.

Figure 2. Representative glycosylation pattern for rhEPO. Çalic et al. (2007)20 described the high mannose pattern of rhE-
PO produced in P. pastoris. Gong et al. (2013)23 described the glycosylation pattern of humanized P. pastoris as bi-antennary 
bi-sialylated. Sasaki et al. (1987)27 defined the glycosylation pattern of rhEPO produced in CHO cells, the most abundant and 
active fraction is tetra-antennary and tetra-sialylated. Montesino et al. (2008)47 studied the glycosylation pattern of rhEPO 
produced in goat milk, the most abundant and finished fraction is bi-antennary and mono-sialylated.
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each of the three potential N-linked glycosylation sites can be 
occupied with a range of possible different glycans, and this is 
also valid for the potential O-linked glycosylation site27–32. This 
glycan heterogeneity is presented among different cell lines, 
different products synthetized in the same cell line and even 
among batches of the same product27, 30, 33–38. From a biotech-
nological point of view, this is a particularly relevant problem 
because it causes, for rhEPO, a dependence between the in 
vivo activity and production method due to variation of post-
translational modifications7, 35, 37, 39.

Recombinant proteins production in mammalian cell have 
drawbacks such as the high cost and the fact that is a tech-
nically demanding process40. An alternative method used to 
overcome these problems is the production of recombinant 
proteins in the milk of transgenic animals41–43. Using this tech-
nology it is possible to detect the protein in the milk of transge-
nic animals, but the expression levels are low and it is reported 
that ectopic expression of the gene can affect the health of the 
animal43. Another alternative has been the in situ transduction 
of the mammary gland with viral vectors.  Using adenoviral 
vectors Sánchez O. et al (2004)43 achieved high levels of hu-
man growth hormone (hGH) in the milk of mice and goats. La-
ter, they produced as high as 2 g/L of rhEPO in goat’s milk44. 
These results show the capability of producing high levels of 
recombinant proteins in the milk of non-transgenic animals. 
However, the rhEPO produced in goat milk showed a low in 
vivo hematopoietic activity caused by a different pattern of gly-
cosylation, specifically it presented a low level of sialylation46, 47. 
Figure 2 summarizes representative glycosylation patterns for 
rhEPO of some production methods mentioned above, it is im-
portant to note that all cells and organisms generate a broad 
spectrum of intermediate glycosylations.

Aglycosylated rhEPO
As previously described, the glycosylated rhEPO produced 

in CHO cells exhibit a hematopoietic in vivo activity similar to 
native hEPO. Though, the hormone expressed in other cells or 
organisms tend to suffer important variations on its activity 
due to different patterns of glycosylation. One possible solu-
tion could be using a rhEPO without glycosylations, however 
it has been observed that the aglycosylated form of rhEPO 
has an almost null in vivo activity, despite of having greater 
in vitro activity compared to the native protein7, 12, 39, 48–54. As a 
consequence of the absence of glycosylations, the aglycosyla-
ted rhEPO is cleared from plasma 20 times faster than the 
highly sialylated protein55. Interestingly, the aglycosylated rhE-
PO exhibit an affinity and a velocity of union to its receptor at 
least five times higher than the glycosylated counterpart and 
this increases markedly the in vitro activity of the aglycosyla-
ted form50, 51, 53, 56. Notably, this increase is negatively correlated 
with the sialic acid content of the molecule10, 51, 57. Unfortuna-
tely, the lack of in vivo activity prevents aglycosylated rhEPO 
from being a viable choice as a biopharmaceutical and it does 
not allow to explore cheaper and more efficient productive al-
ternatives

Regulation through hEPO receptor
One of the most important mechanisms of signaling re-

gulation of hEPO is the internalization of the complex between 
hEPO and its receptor (EPOR) and later degradation of the 
hormone at target cells58–60. The internalization of hEPO-EPOR 
complex also controls the cell sensitivity to the hormone and 
it is crucial to negatively regulate hEPO levels on blood circu-
lation61, 62. In fact, evidence shows that the clearance of hEPO is 

directly correlated with EPOR levels at bone marrow63–67. One 
interesting fact is that the persistence of union between hEPO 
and its receptor is altered by the high content of sialic acid. The 
reason for this is that negatively charged glycosylations alter 
electrostatics interactions and causes a diminished affinity in-
versely related to the number of glycosylations68, 69. The base 
of this is the interaction at complex interface which occurs 
between positively charged amino acids at rhEPO and negati-
vely charged amino acids at EPOR70. The decreased affinity of 
hEPO for EPOR, given by glycosylations, causes an increase on 
its half-life thanks to a lower internalization of the complex62.

All this knowledge has been utilized to create the biophar-
maceutical Darbepoetin alfa (Aranesp®), which is based on a 
hyperglycosylated rhEPO. The excess of glycosylations gives 
it a four times lower affinity for EPOR plus a higher molecu-
lar weight which results in a three times greater half-life than 
native hEPO69, 71. Studies with Darbepoetin alfa has shown that 
excess of glycosylations, independent of position, increases 
the persistence of rhEPO in blood circulation. This generates 
an augmented and prolonged in vivo activity which overcome 
the affinity reduction to its receptor72.

It could look paradoxical that a decrease in affinity for the 
receptor increases the in vivo activity, but this happens becau-
se the signaling process of hEPO-EPOR complex is fast and 
as soon as it forms, internalization and degradation begins73–75. 
Because of this, a drop in affinity for the receptor allows hEPO 
to keep on blood circulation longer and acting over a higher 
number of target cells.

Improvement of rhEPO half-life
One of the main roles of hEPO glycosylations is the increa-

se of half-life thanks to a reduction of its glomerular filtration 
and hepatic clearance. Unfortunately, from a clinical point of 
view rhEPO does not last long enough in blood, only six to ei-
ght hours and it must be administered to patients two to three 
times per week. Therefore, the costs for the patient or the 
health system increases even more. After the patent of rhEPO 
as a biopharmaceutical, presented by Amgen Inc. expired in 
2005, a variety of biosimilars and biobetters have been made. 
To improve rhEPO half-life is the primary goal of different la-
boratories and companies searching to reduce the number of 
doses required. The main strategy has been to increase the 
molecular weight through different ways like the fusion with 
albumin76, fusion with glycosylated peptides77, 78, formation of 
homodimers by linker peptides79–81, hyperglycosylation69, 71 and 
polyethylene glycol (PEG) conjugation82, 83. PEG conjugation 
strategy has led to the creation of a long-lasting erythropoie-
sis stimulator like Mircera® (Roche) which needs only one ad-
ministration per month. Although its cost-effectiveness is not 
clear84.

Another approach to increase the molecular weight is the 
fusion with a Fc portion of an IgG. This strategy has been tes-
ted in human and already exists some commercially available 
products like CTLA4-Fc (Orencia; Abatacept), LFA3-Fc (Ame-
vive) and TNFR-Fc (Enbrel)85. Considering this, rhEPO-Fc va-
riants has been generated and produced in CHO, NS/0, PerC6 
and BHK cells86.  A rhEPO fused with a IgG2 Fc portion showed 
an important extension of half-life and the need of only one 
dose per week87, 88.  Genexine, Inc. has created a rhEPO fused 
with a Fc derived from IgD and IgG4 which passed phase I cli-
nical trial89 and it is currently under phase II. Salgado E. et al 
(2015)90 generated and produced in goat’s milk an rhEPO fused 
to a IgG1 Fc. This group reported that the altered glycosylation 
pattern, of mammary gland, considerably affected rhEPO-Fc 
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in vivo activity, despite of the substantial increase in molecular 
weight.

Conclusions
The in vivo hEPO activity has a direct relation with its 

glycosylation and provides advantages like enhanced half-li-
fe, a decrease in the affinity for EPOR and other like impro-
ved folding, secretion and biodistribution48, 50, 91. However, for 
the hormone recombinant production the different glycosyla-
tion patterns, provided by the selected cell line, are an issue. 
Heterogeneity carries extra steps during downstream. The 
mandatory use of mammalian cell, for produccing rhEPO, 
increases the final costs. Besides, the glycosylations are not 
enough to increase the molecular weight for completely avoid 
glomerular filtration. Currently, different groups are develo-
ping groundbreaking approaches to modify the protein and 
improve its half-life. Although, these strategies have to pro-
ve their cost-effectiveness. On the other hand, the approach 
of “humanizing” different productive organisms could be very 
useful because it could considerably reduce the production 
costs of glycosylated rhEPO, which is the “active component” 
of all the biosimilars and biobetters. Although, the production 
of new and differents “active components” with same erythro-
poiesis efficacy and less structural complexity could be ga-
me-changing.
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