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Current situation of snakebites envenomation in the Neotropics: Biote-
chnology, a versatile tool in the production of antivenoms
Elizabeth Romo1, Marbel Torres1,2,3, Sarah Martin-Solano1,2,4*

Abstract: Snakebite envenomation is a neglected tropical disease that affects millions of people around the world with a 
great impact on health and the economy. Unfortunately, public health programs do not include this kind of disease as a 
priority in their social programs. Cases of snakebite envenomations in the Neotropics are inaccurate due to inadequate 
disease management from medical records to the choice of treatments. Victims of snakebite envenomation are primarily 
found in impoverished agricultural areas where remote conditions limit the availability of antivenom. Antivenom serum is the 
only Food and Drug Administration-approved treatment used up to date. However, it has several disadvantages in terms 
of safety and effectiveness. This review provides a comprehensive insight dealing with the current epidemiological status 
of snakebites in the Neotropics and technologies employed in antivenom production. Also, modern biotechnological tools 
such as transcriptomic, proteomic, immunogenic, high-density peptide microarray and epitope mapping are highlighted 
for producing new-generation antivenom sera. These results allow us to propose strategic solutions in the Public Health 
Sector for managing this disease.
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Introduction
Neglected diseases occur in tropical and subtropical cli-

mates, specifically in rural areas where access to clean wa-
ter, sanitary conditions, and medical care are limited1. They 
are caused by various pathogens such as viruses, fungi, 
bacteria, parasites and toxins, causing health, economic 
and social consequences. The term neglected is because 
these diseases are absent in most public health programs2 
affecting many people generating disability3 and unemploy-
ment4. In addition, these diseases cause significant effects 
on the economy of developing countries due to the high cost 
of the treatments5,6.

The World Health Organization WHO, in its NTDs port-
folio, included 17 snake-caused diseases. Snakebite disea-
ses were previously not on the NTD list, but since 2017, 
public health strategies have been planned for prevention, 
control and treatment7. Snakebites envenomation is found 
in Latin America, Africa, Asia and Oceania, poor rural tro-
pics populations8-11. These countries have an absence of 
public health policies12 pointed to snakebites diseases, so; 
they have no access to health services1,13 and have a shor-
tage of both medical supplies and trained human medical 
equipment.

More than 4 000 snake species worldwide, but only 250 
are known of medical relevance2. Regions with the most in-
credible diversity of venomous snakes include Latin America 
and Asia12. Snakebite should be considered an NTD priority 
because it involves a wide snake diversity of species and, 
thus, a variety of toxins14. Snakes causing most ophidian 

accidents belong to the Viperidae and Elapidae families and 
the genera Bothrops and Micrurus5,15,16. Several risk factors, 
such as climate17 and ecology18, predispose to increased 
ophidian accidents19. Both rainy seasons and snake abun-
dance5 cause a higher snakebites incidence5,20,21.

Generally, global data for snakebites are not accurate, 
showing variability mainly due to scarce and not represen-
tative epidemiological studies5,19,21. Most hospital reports22 

and surveys12 do not report important data such as inciden-
ce, mortality, and physical and psychological consequences 
suffered by patients23. According to Pach et al.21, five million 
snakebites are reported annually worldwide, two to three 
million results in poisonings and 80 000 to 130 000 people 
die from these diseases. In Latin America and the Carib-
bean, hospital reports indicate approximately 70 000 cases 
of snakebites per year, which may be underestimated24,25.

As a mega-diverse country, Ecuador has 40 poisonous 
snake species22, of which 17 are responsible for 99% of poi-
soning cases. The most significant number of patients are 
found in the Amazon region, followed by the coastal area 
and the Andean region26, which correlates with one of the 
studies of the geographic pattern of poisonous snakes22. 
Among the toxic snake families, the most representative is 
Viperidae and Elapidae23,26.

Poisons are a set of proteins, peptides and enzymes 
that cause toxic effects20 in the pathology of snakebite enve-
nomation. The toxic profiles of each venom vary according 
to the geographic location and snake taxonomy27,28, gene-
rating a wide range of local and systemic pathologies, inclu-
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ding blindness29,30, necrosis31,32, paralysis33, respiratory34,35, 
renal36,37 and cardiac insufficiency38. The only specific treat-
ment currently available is antivenom (Table 1) or antisera 
since its development in 189439,40. The traditional method for 
producing antivenoms is based on animal hyperimmuniza-
tion with non-lethal venom doses with the following collec-
tion of large amounts of plasma11,41.

Almost all countries in the world have limited antivenom 
availability1,13,42,43 due to low interest in drug research and 
development, costs, safety, efficacy, and inefficient antive-
nom distribution5,13,21,23. However, several investigations are 
carried out with different types of antibodies44,45, using phar-
macological molecules46,47 and innovative DNA immuniza-
tion strategies48,49 to inhibit or reduce toxic effects.

This review aims to update the real situation of snakebi-
tes in the Neotropics from the epidemiological point of view 
and also to expose current biotechnological tools that could 
be implemented in the future to solve the drawbacks in the 
production and availability of antivenoms.

Snakebite in the Neotropics: Ecological and 
Environmental Aspects

Ecosystem alteration, agriculture and environmental 
conditions modify the ecological patterns in the geographic 
distribution of the different snake species59. The highest in-
cidence rate is concentrated in rural areas; urban spaces 
report snakebite cases60,61.

Venomous and non-venomous snakebites are the re-
sult of the interaction between humans and various snake 
species found in specific habitats such as jungles62, fo-
rests63,64, arid65,66 and urban areas67,68. Snakes, humans and 
the environment are the three components of this ecological 
interaction where one part can influence the other one while 
also affecting the third one. A circular dynamic characteri-
zes this interaction, so it is necessary to know and relate 

these components. According to Guedes et al.69, 659 snake 
species were recorded in the Neotropics, where species 
richness and phylogenetic diversity are mainly concentra-
ted in the Amazon region of Brazil, the Andean region of 
Colombia, Ecuador and Peru, and some Central America 
regions. On the other hand, few species are recorded in the 
Caribbean. In the Neotropics, the most abundant species 
are L. muta, Micrurus frontalis, B. jararaca, and Bothrops 
erythromelas69. These snakes are of medical and clinical 
importance in the Neotropics and belong to the Colubridae, 
Elapidae and Viperidae families70.

Agriculture causes geographic and ecological change 
in ecosystems, as forests are replaced by cultivated cro-
plands71. Humans have been engaged in agricultural acti-
vities such as planting crops and raising animals since the 
Paleolithic era (12 000 to 5 000 years BP), which continued 
over the millennia to the present day72-74. Many people 
do this job and find themselves vulnerable to venomous 
snakebites75-77. According to Suazo-Ortuño et al.78 research 
on agricultural conversion, snakes are not susceptible to 
changes in their habitat; the species diversity in agricultu-
ral areas is not diminished, and snakebites risk is maintai-
ned. Several epidemiological studies determined a higher 
incidence in tropical rural areas where farming and grazing 
activities are carried out under unfavorable conditions8,14,19.

The most significant number of cases are recorded in 
rainy seasons associated with natural phenomena such as 
floods, hurricanes and cyclones79. In the Neotropics, the El 
Niño phenomenon causes heavy rains that increase the 
incidence of snakebites80. Snakes are ectoderm animals; 
temperature increases cause snakes to migrate to more 
temperate zones that are inhabited by humans81. Climate 
change then causes a geographic redistribution of snake 
species due to alterations in environmental temperature82-84.
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3

Clinical findings, Social, and Economic Impact of 
Snakebite Envenomation

Venomous snakes can cause several local and syste-
mic pathologies such as hemorrhage85,86, necrosis87,88 and 
renal failure89,90. Complications result in physical and psy-
chological injuries91,92 in the short and long term, which can 
have an economic impact, including death.

Short-term sequelae occur immediately after the snake-
bite but can be controlled in a reasonable time. Among 
them, local hemorrhage93, anemia94, edema95, abscesses88 

and bacterial infections96,97 are found. If these complications 
are not treated promptly and adequately, they can lead to 
systemic complications that can result in disability98.

Long-term sequelae appear approximately six months 
after snakebite envenomation and may persist for months 
or even years92,99. These sequelae are of the physical and 
psychological type, although the psychological effects have 
a late onset. For both, there is no follow-up for adequate 
treatment100. Among the physical sequelae, the most com-
mon are tissue injuries. Tissue necrotization can trigger 
compartment syndrome101, which must be addressed by 
surgical treatment. This procedure causes loss of tissue 
and skeletal muscle function3. In some cases, amputations 
must be performed that generate permanent disabilities102. 
The renal dysfunction developed in patients affected by 
ophidian accidents can be persistent and progress to acute 
and chronic renal dysfunction that strictly requires dialysis 
treatment103-105.

Psychological sequelae do not derive from the toxic 
effects of the envenomation. Still, they are the result of the 
traumatic process of the snakebite in which the patient su-
ffers from the physical and economic consequences of the 
ophidian accident. Depression and post-traumatic disorder 
are the most reported effects affecting 25-45% and 43% of 
the patients evaluated, respectively, being the leading cau-
ses of morbidity106,107. Less common psychological effects 
are headaches, vertigo, hysteria, and delirium, but cognitive 
functions are not yet determined to be affected91,99. Long-
term psychological sequelae also cause deterioration in the 
family and educational context. Patients present negative 
attitudes that prevent them from continuing their work, ge-
nerating an economic and social impact107-109. Timely treat-
ment would improve the life quality of snakebite victims. A 
first aid intervention, cognitive and behavioral psychothera-
py allows for to reduction of psychological and psychiatric 
symptoms92,110.

In addition to the physical and psychological sequelae, 
the economic consequences are aggravated by the absen-
ce of rehabilitation after the ophitic accident. This fact hin-
ders labor insertion. Most of the time, the rehabilitation cost 
must be assumed by the patient itself, who usually does not 
have the resources to do so. The family economy in areas 
with a high rate of snakebites is categorized as impoveri-
shed rural areas12,111.

Agricultural activity is the livelihood of these communi-
ties, being limited by the economic expense of the sequelae 
they suffer. According to these situations, conditions for a 
worthy life are reduced112-114. Finally, the economic impact 
affects the nuclear family and negatively affects local and 
national productivity115.

Unfortunately, some case studies do not detail the pa-
tient's conditions under which they die due to snakebites116. 
This fact makes it difficult to show how high a priority this 
disease is. Lizarazo et al.117 reported a case of a farmer 
who suffered a snakebite caused by the B. asper snake that 

produced a cerebral hemorrhage. Unfortunately, the anti-
venom administration was late; he presented a multiorgan 
failure and died. Hospital reports are vital in managing this 
neglected disease, so standardized processes should be 
implemented in public health centers.

Global and Regional Snakebites Burden
Global and regional snakebite envenomation burden 

has not been accurately determined because of scarce in-
formation and studies estimating the incidence and morta-
lity of SBE118. Existing data are based on hospitals' epide-
miological reports that do not provide evidence of the true 
SBE burden24. Collecting information on snakebites and 
envenomations is difficult because most victims live in rural 
and remote areas with limited access to health services55. 
In addition, people in rural communities prefer to treat them-
selves with traditional methods and do not go to hospitals1.

In 1954 an estimated 500 000 poisonings were esti-
mated119, and in 1998 the estimate increased to 5 million 
snakebites per year1,120. According to Gutiérrez et al.121, the 
snakebite burden has an estimated 2.5 million bites per 
year, concentrated in South Asia, sub-Saharan Africa and 
Latin America. Through a regional comparison, it has been 
possible to determine the global level and the regions most 
affected by snakebite envenomation. The annual enveno-
mation cases vary from region to region: Europe, where 
non-venomous snakes mainly cause snakebites, reported 
8000 cases; North America 5 000 to 10 000 patients; the 
Middle East 15 000 to 40 000, Africa 43 000 to 1 000 000, 
Asia 121 000 to 2 000 000, Australia 10 000, Oceania 10 
000 to 500 000 and Latin America 60 000 to 300 0001,120-122 
respectively.

Snakebite occurs in different geographical environ-
ments, whose social, economic and ecological factors may 
be similar, allowing the development of social and techno-
logical strategies to cope with this disease in the context of 
public health. Gutiérrez et al.123 evaluated the snakebite en-
venomation situation in Costa Rica, Nigeria and Sri Lanka, 
the most affected regions worldwide. The annual SBE bur-
den is similar in Nigeria, with 43 000 reported cases, and in 
Sri Lanka, 40 000 reported cases, while in Costa Rica, case 
reports were much lower, reporting just only 500 cases.

The scientific community in Neotropical countries has 
conducted several epidemiological studies. The results may 
overlap with other existing ones, and some countries do not 
publish any information24. In the Neotropics, the countries 
with the most scientific publications on snakebite enveno-
mation are Costa Rica, Colombia, Ecuador, Argentina and 
French Guiana1.

The lack of data reliability and accuracy is due to de-
ficient information systems in the different countries and 
because victims from rural areas prefer to use traditional 
treatment methods based on medicinal plants124,125. In Latin 
America, Chippaux5 reported around 60 000 cases between 
2014 and 2016 of snakebites per year and just 370 deaths. 
In another study, Kasturiratne et al.1 made epidemiological 
estimates of SBE obtaining 115 000 cases of snakebites 
and 2 000 deaths from 1985 to 2007.

Variations in epidemiological indicators such as burden, 
incidence, prevalence and mortality are due to the influence 
of environmental and anthropogenic factors. Also, the pe-
riod and geographical area of epidemiological evaluation 
and the El Niño current have different effects according 
to geographical location126. The countries with the highest 
incidence of around 100 000 cases of SBE per inhabitant 
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in the Neotropics, according to the official health reports of 
each country, are Panama with 55.8, French Guiana with 
21.1, Venezuela with 18.9, Costa Rica with 15.0 and Brazil 
with 13.45. Values of SBE burden vary among scientific pu-
blications and may be over or underestimated. The annual 
incidence of snakebites worldwide is about 6.2 per 100,000 
inhabitants, while mortality is 0.04 per 100,000 inhabitants5.

Antivenom Production: Current Status in the 
Neotropics

Antivenom production in the Neotropics dates back to 
the beginning of the 20th century at the Butantan Institute 
in Brazil in 1901, considered one of the pioneering labora-
tories in the region118,127 together with the Clodomiro Picado 
Institute in Costa Rica, founded in 1970128. In 2014, coun-
tries such as Mexico, Costa Rica, Venezuela, Colombia, 
Ecuador, Peru, Bolivia, Brazil and Argentina were antive-
nom producers with laboratories in Public Institutions129,130. 
Brazil, Mexico and Costa Rica were able to satisfy the an-
tivenom demand at the national level and even cover the 
regional and global market118,131-134.

In other cases, where antivenom needs are not su-
pplied, it must be imported from other countries in the region 
and even from other continents, as in the case of Martinique 
and Saint Lucia, Caribbean islands, which import antivenom 
from France and the United States, respectively118,135. In the 
case of Ecuador, antivenom production was local at the for-
mer antivenom producer "Instituto de Higiene y Medicina 
Tropical, Leopoldo Izquieta Perez", which operated up to 
2012 and was closed due to deficiencies in the production 
processes13. At the beginning of 2022, the National Institu-
te of Public Health Research INSPI signed a cooperative 
agreement with the Regional Amazonic University IKIAM to 
implement a research project to optimize the experimental 
production of effective antiophidic sera in Ecuador. This pro-
ject promotes a change in public health perception and in 
the snakebite envenomation victims' lives.

In addition to the importance of producing antivenoms 
to reduce the SBE burden, they should be validated through 
pre-clinical and clinical trials to determine their effectiveness 
against various venoms. This becomes in an essential task 
due to the diversity of snake species in the Neotropics. Se-
veral clinical studies have been conducted with antivenoms 
from the region to treat endemic snake envenomation136 
and have successfully reduced the envenomation signs 
developed in the victims137-139. The results of these assays 
indicate the existence of cross-reactivity106,130,133,140,141among 
antivenoms and toxins affecting patients, while others can-
not neutralize heterologous venoms142. Antivenoms produ-
ced commercially in the Neotropics at a laboratory scale are 
mostly derived from equine serum and neutralize venoms 
of the genus: Bothrops143-145, Crotalus146-148, Micrurus149-151, 
Lachesis140,152.

Currently, there are only three antivenoms approved by 
the Food and Drug Administration FDA for exclusive use 
in the United States: Antivenin® Wyeth153, CroFab®154 and 
Anavip®155. In the Neotropics, only the antivenom Antivi-
pmyn®, manufactured by Bioclon Laboratories of Mexico, 
was recognized by the FDA as an orphan drug156. These 
orphan drugs are intended to treat diseases affecting a 
small number of people, less than 200,000157. However, the 
FDA-approved drugs derived from snake venoms such as 
Captopril and Batroxobin158, obtained from the venom of B. 
jararaca, and the latter from B. moojeni and B. atrox32,159. 
These drugs have proved biomedical applications.

The efforts of antivenom research and production are 
evident in the published scientific literature; however, the-
re are drawbacks related to the heterogeneity in the used 
production technologies, the quality and innovation of the 
pharmaceutical products obtained and the production volu-
mes129,160,161. These variables cannot be analyzed due to the 
absence of updated and reliable epidemiological informa-
tion that would allow having a base-line and thus supply the 
antivenom requirements. In addition, antivenom production 
in Latin America during 2020 was reduced as a consequen-
ce of the COVID-19 pandemic caused by SARS-CoV-2. Me-
dical supplies and research were mainly focused on deve-
loping therapies and diagnostic kits to cope with COVID-19 
health emergencies162.

Snakebite in Ecuador
Epidemiological studies in Ecuador are limited62,163. No 

data has existed in the country's health system records in 
the last three years. From 2014 to 2018, the Public Health 
Ministry of Ecuador, through the Epidemiological Gazette, 
recorded 7 714 cases of snakebites in the country, with an 
average incidence of 9.37 / 100 000 inhabitants and an an-
nual incidence of 9.0, 11.3, 10.4, 8.6 and 7.6 respectively164. 
In the Chippaux5 study, incidence and mortality rates of 9.5 
and 0.057 cases per 100,000 inhabitants were estimated 
in 2014-2015. In another study, Ecuador reported 9.8 ca-
ses per 100,000 inhabitants that resulted in 0.06 deaths per 
100,000 inhabitants each year in 1998-200780. The annual 
incidence of snakebites in Ecuador does not have signifi-
cant variations even though the Spatiotemporal analysis 
differs, 11.5 /100 000 inhabitants80,7.7-11/100 000 inhabi-
tants165 and 9.5 / 100 000 inhabitants5.

Morona Santiago and Manabí are the provinces that 
register the highest number of snakebite cases. However, 
it is observed that in both the coastal and Amazonic regions 
were found a more significant number of cases164. Snake-
bites are distributed geographically in the Coastal region 
(56-58%), Andean region (5-33%) and Amazonic region 
(11-37%)80. Studies conducted in indigenous communities 
indicate that the highest incidence of snakebites occurs in 
the Amazon region142,166-168, associated with the distribution 
of snake species in the country22,26. Among the species cau-
sing snakebites in the country is the genus: Bothrops, Bo-
thriopsis, Lachesis y Micrurus79 and the species: B. atrox, 
B. asper, L. muta, B. bilineata y Bothrops lojanus26,168. In-
formation obtained from available epidemiological studies 
indicates that those mainly affected are agricultural workers 
in rural areas80. Heavy rains such as the El Niño Phenome-
non in January to June increase the incidence of snakebite 
cases throughout the country80.

Biotechnological Approach to Snakebite Therapy

Drawbacks of available Antivenoms
Antivenom therapy is the most widely used therapy to 

treat several pathologies, including snakebite envenoma-
tion, by neutralizing the venom proteins169. Traditional an-
tivenom production has several drawbacks affecting their 
safety and efficacy, such as the venom complexity, adverse 
reactions and production costs. Venom composition varies 
by snake diversity69, geographic distribution170,171, ontogene-
tic172 variations and snake growth stage173. Toxins that make 
up snake venom have a great molecular and biological di-
versity, including protein and peptide content; non-protein 
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components such as carbohydrates, lipids, amino acids, 
nucleosides, amines and metal ions174. The main molecu-
les of medical importance are grouped into dominant and 
secondary proteins: phospholipases, metalloproteinases, 
serine proteinases, three-finger toxins, hyaluronidases, and 
myotoxins, among others (Table 2)175. These factors limit 
the antivenom's neutralization spectrum, although several 
studies in the Neotropics indicate a good neutralization ca-
pacity of heterologous venoms, as mentioned in the pre-
vious sections.

Antivenoms are obtained from animal immunization, 
such as horses184,185, donkeys186, and sheep187,188, hence the 
name heterologous antivenoms189,190. Antivenoms currently 
present several drawbacks, as 59% of patients treated with 
this therapy develop adverse events and side effects191. Ear-
ly anaphylactic reactions cause headaches, vomiting, fever, 
and urticaria192,193 and may or may not be an IgE-mediated 
response194. Antivenom can be composed of complete IgG, 

antibody fractions (Fab or (Fab')2) and other serum proteins 
of animal origin that can also cause adverse reactions. In 
addition, many antibodies do not neutralize the target an-
tigen195. Different types of antibodies are involved in deve-
loping late anaphylactic adverse reactions, such as human 
anti-horse antibodies named heterophile. These antibodies 
form an immune complex deposited in the target tissues 
causing inflammation known as serum sickness196,197.

Purification and enzymatic digestion techniques are be-
ing employed to improve the quality and safety of the drug 
product while reducing the effects of adverse reactions198. 
Antivenom formulations with antibody fragments maintain 
neutralizing capacity and minimize adverse effects137,199. 
This antibody-based production technique currently emplo-
yed has several disadvantages due to the costs of animal 
maintenance and antibody purification techniques. These 
facts limit the reproducibility of this technology14,189.

Table 2. Main snake venom to-
xins, physiological effects and its 
3D-structure.
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Based on this background, we expose the use of bio-
technological tools with an innovative approach to improve 
the neutralization of venoms, increasing their efficacy and 
improving production yields. It is essential to consider bio-
technology as a solution to the shortage of antivenoms in 
Latin America and the world since production costs can be 
reduced, and the pharmaceutical market in the production 
of antivenoms will be empowered.

Recombinant Antibody Technology
The first recombinant antibodies were developed by 

Georges Kohler and Cesar Milstein in 1975 using the hy-
bridoma technology200. Recombinant antibody technology 
since then has become a potential therapy for snakebite 
envenomation. They are more effective because of their 
neutralizing capacity and reduced side effects such as ana-
phylactic reactions compared to animal serum-based anti-
venoms198. Using this technology, several antibody formats 
have been obtained in chimeric and humanized versions, 
whose therapeutic use is approved by the FDA in treating 
several diseases201,202.

The hybridoma technology, nevertheless, has several 
disadvantages. The main one is related to the develop-
ment of human anti-mouse antibodies that cause allergic 
reactions and decrease the lifetime of the therapeutic anti-
body203; however, this is still the most widely used technique 
for antibody production. Production of antibodies involves 
an immunological process in which the antigen undergoes 
proteolytic degradation, so the derived antibodies will not 
distinguish the antigen in its initial form204. Therefore, re-
searchers work to find other technologies that solve these 
drawbacks and do not activate the complement system.

Antibodies for therapeutic purposes like IgG have a 
longer life and are more permeable205. Recombinant antibo-
dies have various formats in the structure; they are assem-
bled according to different combinations of heavy and light 
chains206. The single-chain variable fragment (scFv) and 
fragment antigen-binding137 are the most commonly used 
formats because of their high affinity to the antigen, structu-
ral stability and shorter generation207.

Currently, several studies demonstrate the efficacy and 
therapeutic potential in neutralizing various snake venoms 
using recombinant antibodies of multiple formats, e.g., ca-
melids nanobodies against the poison of B. atrox208 and C. 
durissus terrificus209; scFv against the venom of Bothrops 
pauloensis210 and L. muta211. Recombinant antibodies, such 
as scFv and nanobodies, are FDA approved for treating the 
diseases, except for the treatment of snakebite envenoma-
tion212. In addition, the FDA and European Medicines Agen-
cy EMA has not approved the production of recombinant 
antibodies in E. coli189.

The isolation of therapeutically effective antibodies has 
presented low yields due to the high purification costs using 
traditional methods213-216. Smith217, in 1985 developed the 
phage display technique (PDT) that is independent of an im-
mune system, making this technique the most selected sin-
ce it does not generate immunogenicity in patients218. The 
PDT, as shown in Figure 1, consists of an in vitro phenotypic 
selection of antibodies expressed with the fusion proteins 
of M13 filamentous phages. At the same time, a genotypic 
selection is needed because the various genes encoding 
the antibodies of interest are found inside the phages219,220. 
The antibody selection and enrichment process are perfor-
med by affinity to the molecules of interest, in this case, the 
venom toxins218,221. This technology's advantages focus on 

controlling the process conditions such as antigen selection, 
immobilization, design of the antibody libraries, and binding 
and washing needs. In addition, it is a faster and low-cost 
technique compared to hybridomas production204. It is good 
to stand out that antibody production against snake venom 
toxins has only reached the laboratory scale; research is 
still ongoing for their optimization and further scaling up.

The next stage of affinity antibody selection is hetero-
logous expression. There are several expression systems 
ranging from bacteria, yeast, insects, and plants to mam-
mals, each with advantages and disadvantages222. Bacte-
ria such as Escherichia coli223,224 and Bacillus subtilis225,226 
have been employed as factories to produce heterologous 
proteins for therapeutic purposes because their genome is 
characterized and genetic manipulation is simple; they have 
rapid growth and bioprocesses have enabled large-scale 
production at low cost167,227. Castro et al.228 produced a re-
combinant antibody, scFv, that neutralizes the BaP1 meta-
lloprotein from Bothrops asper snake venom by expressing 
the antibody in a bacterial system using Escherichia coli 
as host (Figure 2). After protein extraction and purification, 
the yield was 280 ug of scFV per liter of bacterial culture. 
The drawbacks of these systems are due to the absence of 
post-translational modifications and a poor excretion sys-
tem, as the stability of the proteins depends on the oxida-
tive environment where it is secreted. In addition, inclusion 
bodies can be formed, hindering antibody purification229-231. 
Strategies to optimize antibody production in E. coli are lis-
ted in Table 3.

The most commonly used yeasts for these purposes are 
Pichia pastoris240-242 and Saccharomyces cerevisiae243,244. 
Both are easy to grow, perform post-translational modifica-
tions such us disulfide-bonded and protein glycosylation, 
have a high growth rate and protein secretion levels are 
very high. Contrary to bacterial expression systems, protein 
secretion in yeasts constitutes a great productive advanta-
ge since the secreted proteins are harvested relatively quic-
kly from the culture medium, so downstream processes are 
cheaper242,245. Pichia pastoris is also the most widely used 
yeast strain due to its ease of industrial scaling. It reduces 
costs and minimizes equipment used for implementing pilot 
or industrial bioreactors246. Yeast expression systems are 
used to produce recombinant antibodies and proteins with 
inhibitory action against venom toxins (Figure 2). The antim-
yotoxic protein DM64, which acts against phospholipases 
A2 of Bothrops asper venom247, was successfully produced 
by a recombinant Pichia pastoris.

Mammalian cells are commonly used to produce 
biopharmaceuticals, antibodies and active protein248. Anti-
body production in mammalian cell systems is mainly selec-
ted by its ability to carry out post-translational modifications 
that maintain antibody stability so a correct protein function. 
However, expensive culture media due to nutrient require-
ments and high contamination rates limit this technology. In 
addition, yields are low and the slow production time increa-
ses costs236,249.

Laustsen et al.251 and Jenkins and Laustsen250 estima-
ted the cost of large-scale production of antibodies in the 
Chinese Hamster Ovary (CHO) cell expression systems 
using a fed-batch fermentation strategy. The production cost 
ranged from 20 to 250 USD for these pharmaceutical pro-
ducts. On the other hand, plasma-derived antivenom pro-
duction is around a thousand dollars. Currently, no studies 
are estimating the cost of new screening and expression 
technologies applied to large-scale antivenom production.

Elizabeth Romo, Marbel Torres, Sarah Martin-Solano
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Figure 1. Phage display for selection of antibodies against snake antivenom. Image created using BioRender (https://
biorender.com/).

Current situation of snakebites envenomation in the Neotropics: Biotechnology, a versatile tool in the production of antivenoms



8

An alternative system to those described above in-
cludes insect cells advantageously as production hosts. 
This expression system can use chaperones for correct 
protein folding and own key metabolic pathways to carry 
out post-translational modifications, such as acetylation or 
glycosylation251,252. The system works with the baculovirus 
expression vector253. Insect cells are used as hosts to a 
greater extent for toxins production used as immunogens 
and for different in vitro toxicity assays. This technology is 
more complex but with high throughput and reproducibility 
at low costs254.

Finally, we have plant-based expression systems. To 
date, several types of toxin antibodies have been produ-
ced experimentally255-258. Plants are considered biofactories 
because of the amount of biomass they generate, allowing 
large-scale production. They are low-cost and not suscep-
tible to contamination. Nevertheless, even though the initial 
steps of N-glycosylation and N-glycan processing are highly 
conserved between plants, mammals and yeast, N-gly-
cosylation patterns differ between them259.

Antibody expression titers in plants are low, so approa-
ches for expression improvement have pointed to expres-
sion cassette design, plant and tissue selection and plant 
material extraction techniques260. There are few studies of 
antibody expression in plants (Figure 2). One reported the 
extraction and purification from Nicotiana tabacum leaves of 
scFv against B. pauloensis venom210.

Although different techniques currently produce mono-
clonal antibodies, other biotechnological alternatives can be 
employed to enable regional and global scale of antivenoms 
production.

Omics for the production of Antivenoms
Omics enable innovation in the health sector to broaden 

the understanding of physiological processes of pathologies 
involving various molecules such as nucleic acids and pro-
teins261 so, facilitating effective diagnosis and treatment262. 
Omics tools such as proteomics and transcriptomics are a 
fundamental axis in the design and production of antive-
noms (Figure 3) as they are part of the preclinical evaluation 

and improvement of antivenom efficacy170,263.
These technologies must comply with the good ma-

nufacturing practices detailed in the WHO Guidelines for 
the industrial production of antivenoms43,264 to ensure the 
quality and safety of the pharmaceutical product265. Proteo-
mic and transcriptomic guide researchers to understand 
the biochemical and toxicological variations in venoms to 
antivenoms265 response. Omics tools should be included in 
antivenom production processes to validate the safety and 
quality of the bioproduct266.

Transcriptomics
Transcriptomics studies genome-encoded RNA trans-

cripts such as mRNA, rRNA, tRNA, miRNA, and non-co-
ding RNA267. The mRNA is required for protein synthesis, 
and its abundance indicates the presence of a target gene. 
The transcriptome is subject to change due to time, envi-
ronmental and physiological conditions268. Transcriptomics 
gives information on RNA diversity, transcriptional units, 
splicing mechanisms, post-transcriptional modifications and 
information of gene expression, regulation and signaling267. 
The transcriptomics workflow is depicted in Figure 3.

Transcriptomic studies of venoms and venom glands 
of some snakes from the Neotropics were carried out by 
Rodrigues et al.269. He compared the transcriptomic profi-
les of the venom and venom gland of Bothrops pauloensis, 
finding qualitative variations and low concordance with the 
proteomic profiles. Ontogenetic changes affect venom com-
position; in young species of B. jararaca there is a greater 
diversity of toxin precursors and elevated amounts of me-
talloproteinases compared to adult species173. The analysis 
of the ontogenetic factor is fundamental in the production of 
antivenom since the efficacy in neutralizing envenomations 
caused by juvenile species may be limited. Freitas-de-Sou-
sa et al.270 evaluated the environmental effect in captive and 
wild species of de B. atrox, the composition of the venoms 
does not present significant quantitative differences, thus, 
supporting the use of venoms from captive species for the 
production of the antivenom.

The use of transcriptomics as a tool for toxin discovery 

Table 3. Strategies for the expression of disulfide-rich proteins in E. coli.
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Figure 2. Protein and recombinant antibody expression systems for the production of snake antivenoms. Image created 
using BioRender (https://biorender.com/).
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has displayed good results. In the venom gland of Bothrops 
moojeni, new toxins have been discovered, and amino acid 
sequences of unreported toxins have been obtained. These 
findings promise to know the function of new toxins and to 
design effective and neutralizing antivenoms271. Transcrip-
tomics is used to know the complexity and composition of 
snake venoms and to evaluate toxins' immunogenicity at 
the molecular level, specificity and affinity for epitopes. The 
study of phospholipase A2 and three-finger toxin from Mi-
curus nigrocinctus venom presented low immunogenicity272.

Proteomics
Proteins are expressed in cells and perform cellular 

processes related to biological functions. Proteomics stu-
dies the entire set of proteins in a cell or organism273. It is 
characterized by being dynamic and influenced by time, 
space, environment and cellular modifications such as 
post-translational modifications274,275.

Proteomics has several approaches to obtaining infor-

mation about protein structure and functionality, including 
cellular expression, modifications, interactions and sig-
naling275. The study of proteomics is essential if we con-
sider proteins as gene products since proteins determine 
the phenotype. Genomics is static; the expression level of 
a gene will not always correlate with protein levels276 due 
to post-transcriptional and post-translational modifications. 
The study of snake venom proteins is also known as veno-
mics. Both venomics and peptidomics allow understanding 
of the biological processes in envenomation, development 
of new therapeutics and potential pharmacological applica-
tions of snake venom toxins277. Proteomics follows two main 
experimental approaches for its study: gel-based and mass 
spectrometry. The mass spectrometry approach is divided 
into two modalities: Bottom-up or Shotgun proteomics, 
where proteins undergo enzymatic digestion, and top-down 
analysis employs intact protein278. The proteomics workflow 
is depicted in Figure 3.

Venom proteomics studies showed variations in the 

Figure 3. Transcriptomic and Proteomic Approach for the Development of Snake Antivenoms.
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composition and functionality of toxins by several factors. A 
phylogeographic approach with proteomic tools has deter-
mined the venom phenotypes of snake species belonging 
to the Micrurus; the geographic distribution of venomous 
snakes and evolutionary mechanisms are very influential 
factors279. There are interspecific, intraspecific, qualitative 
and quantitative variabilities of snake venoms under diffe-
rent environmental conditions. Oliveira et al.165 evaluated 
the proteomic profiles of 22 individuals of the C. durissus 
terrificus, new venom components were found with various 
enzymatic activities that cause other immunological and 
biochemical effects affecting antivenom production. Snake 
species, such as B. atrox and B. jararaca, develop a res-
ponse to adapting environments that can produce several 
venoms-protein isoforms at the molecular level with diffe-
rent biological activities, complexity and enzymatic activity, 
which limits antivenom efficacy280,281.

Immunogenomics
Immunogenomics is an essential tool for antivenoms 

development since epitopes mapping antibodies capable 
of recognizing these antigenic sites can be designed. This 
fact increases the neutralization capacity of antivenoms282. 
This tool, also known as antivenomics, allows identifying 
the recognition of certain immunogens by antibodies, a key 
factor in the clinical efficacy of antivenom in snakebite en-
venomation283.

The antivenoms produced at Instituto Butantan and 
Instituto Clodomiro Picado present efficient neutralization of 
the venom of B. atrox and Bothrops erythromelas species in 
the northern region of South America and Brazil, respecti-
vely170,284. The commercial antivenom Antivipmyn Tri produ-
ced in Mexico by Instituto Bioclón exhibits immunoreactivity 
of C. durissus cumanensis venom in Colombia285.

Toxins used to determine antibody responsiveness are 
also produced without the need for host cells. Protein syn-
thesis is performed with the necessary components: dNTPs, 
amino acids, ATP, GTP, biological machinery that includes 
ribosomes, tRNA, RNA polymerases, initiation and elonga-
tion factors and a motor-like plasmids DNA carrying the co-
rrect information for transcription, translation and accurate 
folding in vitro. The main drawback of cell-free production is 
the low yield of proteins and their poor stability286,287.

Bioinformatics, the best omics ally
The results obtained from these omics tools are mas-

sive, so computational tools are needed to facilitate data 
analysis288,289. Bioinformatics, through the use of algorithms 
and computational strategies, develops methods to analyze 
biological data, which include: data organization and cura-
tion, processing, annotation, statistical analysis, prediction 
and simulation290. The most commonly employed bioinfor-
matics analyses are listed in Table 4.

Scientific evidence for decision-making in Public 
Health

The vast amount of information found in the published 
scientific literature on snakebite epidemiology, strategies 
and other associated issues can create confusion among 
decision-makers in governmental entities in the region and 
hinder the formulation of public health policies. Based on 
this systematic review, we propose actions that govern-
ments should implement according to their country's needs.

Start with creating a single national registry system to 
obtain a database on the epidemiology of snake bites. The 

information obtained will make it possible to know which 
groups are most affected. With this base information, stra-
tegic programs for prevention, control, monitoring, planning 
and research can be developed.

Follow-up programs for victims of venomous snakebi-
tes can reduce long-term sequelae. Prevention strategies 
should include educational programs and the provision of 
protective equipment in rural areas whose main activity is 
agriculture. Efforts should be made to strengthen the medi-
cal room for rapid action in snakebite emergencies.

Last but not least, governments should provide resour-
ces for the characterization of clinically meaningful snake 
venoms and promote research to create effective and low-
cost diagnostic and therapeutic tools.

Conclusions
Snakebite disease is considered a neglected tropical 

disease due to its global, regional and national burden, as 
well as its social and economic impact on society. Although 
there are several prevention strategies and tools for treating 
this disease, a One Health approach is required because 
several actors are involved in its dynamics. Ecological, po-
litical, technological and medical aspects should be con-
sidered to allow us to manage and administer the correct 
registration of snakebite cases from public policies. It is es-
sential to ensure the development of preventive programs 
and effective treatments for snakebite envenomation using 
current biotechnological tools for vulnerable populations. 
Preventive programs will improve the economic and social 
situation of the most affected regions today. The most mo-
dern biotechnological tools have been applied experimen-
tally, but only on a laboratory scale, and the support of go-
vernmental entities is a crucial factor in enhancing the future 
industrial production and snakebite antivenoms scaled up.
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